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TL;
DR

We introduce SPH-NCA, a discretization-agnostic neural cellular automata framework that uses a 
differentiable SPH method for perception and a stable training scheme, allowing image and texture synthesis 
on any grid, resolution, or 3D surface while trained on a fixed-resolution 2D image.

SPH-NCA Framework

Results

Motivation

Also take a look at our supplemental video for evolving SPH-NCA in action!

Neural Cellular Automata are awesome! They’re 
simple, robust, self-organizing, and lightweight [1]. 
Inspired by their local perception mechanism, we 
began to search for a universal architecture that 
is applicable on various surfaces.
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Related Works
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1 Can the model train on diverse discretizations?
2 Once trained, can the model generate on other types of 
discretization, such as from a square grid to irregular grids?

Conclusion

Perception mechanisms in previous works are 
prone to overfitting to the original topology of 
the trained domain. 
We built our framework around the perception 
mechanism based on SPH method that can give 
consistent gradient for any discretization.

SPH-NCA framework can “train once, generate 
anywhere” across diverse resolutions, grid 
regularities, and 3D geometries.
This result highlights the potential of differentiable 
SPH methods for robust spatial data learning in 
generative models, opening new avenues for 
future research.
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