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Figure 1: While trained on a regular grid of fixed resolution, our method, SPH-NCA, can generalize in diverse samplings.
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1 Introduction
Image and texture synthesis is crucial for visually rich content,
yet most techniques are limited to regularly sampled data. Neural
Cellular Automata (NCA) introduce a self-organizing approach to
neural image and texture generation, extending classical cellular au-
tomata by integrating trainable neural networks to govern local cell
state transitions, making them lightweight and robust [Mordvintsev
et al. 2020]. While recent studies have explored various perception
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schemes for diverse data structures (e.g., GraphNCA [Grattarola
et al. 2021] and MeshNCA [Pajouheshgar et al. 2024]), these meth-
ods often overfit to the connectivity of the training data, making
it difficult to generalize to topologies and geometries outside the
trained domain.

To overcome these limitations, we propose SPH-NCA1, a novel
framework that combines the self-organizing NCA architecture
with the mesh-free spatial discretization of Smoothed Particle Hy-
drodynamics (SPH) methods for perception. In contrast to other
works, our SPH perception can estimate the cell’s local gradient
on arbitrary spatial discretizations without relying on explicit con-
nectivity, circumventing the need for training data augmentation
and achieving discretization-agnostic generation. Alongside SPH
perception, we also present gated adaptation and progressive grow-
ing training scheme to stabilize the training of SPH-NCA models.
We demonstrate SPH-NCA’s test-time generalization across diverse
surface samplings, from regular 2D grids to complex irregular 3D
surfaces, showcasing its ability to train once on regular data and
generalize to arbitrary geometries.

2 Methods
This section details the SPH-NCA method, focusing on our key
contributions: SPH perception, gated adaptation, and the progres-
sive growing training scheme. Figure 2 provides an overview of the
architecture and its main components, while additional details can
be found in the supplemental material.

SPH Perception. We replace Sobel filter-based gradient estimation
with a diferentiable SPH method with the kernel radius ℎ: ∇𝑆𝑖 =
SPHGrad({x𝑖 , 𝑆𝑖 }, ℎ). The resulting 3𝐶-dimension perception vector
𝑍𝑖 is concatenated from 𝐶-dimensional 𝑆𝑖 and 2𝐶-dimensional 2D
1The code is available at https://github.com/hyunsoo0o0o0/SPH-NCA

https://orcid.org/0000-0002-0404-1892
https://orcid.org/0000-0003-4676-9862
https://doi.org/10.1145/3721250.3742998
https://doi.org/10.1145/3721250.3742998


SIGGRAPH Posters ’25, August 10–14, 2025, Vancouver, BC, Canada Kim and Park

SPH Perception Gated Adaptation

Dense-256

ReLU

Dense-33

𝑆𝑆𝑖𝑖 ∇𝑆𝑆𝑖𝑖
𝑍𝑍𝑖𝑖

𝐺𝐺𝑖𝑖 𝑈𝑈𝑖𝑖 𝑠𝑠𝑖𝑖

𝑆𝑆𝑖𝑖′

Progressive Growing

Step 1

Step 2

Step N

Initial 
states

𝜎𝜎
tanh 𝜎𝜎

Iter

Loss

�
𝑗𝑗

𝑆𝑆𝑗𝑗 − 𝑆𝑆𝑖𝑖 ∇𝑊𝑊ℎ 𝐱𝐱𝑗𝑗 − 𝐱𝐱𝑖𝑖 𝑉𝑉𝑗𝑗

SPH-NCA Architecture

Figure 2: Architecture of SPH-NCA. The perception stage uti-
lized the SPHmethod to compute the gradient from irregular
samples. The adaptation stage uses a gating mechanism to
update particle states. During the training of SPH-NCA mod-
els, progressively increasing the number of steps stabilizes
the training.

projection of ∇𝑆𝑖 . On 3D surfaces, ∇𝑆𝑖 is projected onto the local
tangent planes.

Gated Adaptation. SPH-NCA replaces the typical simple additive
update with a novel gating mechanism to prevent state explosion
and saturation during training. The perception vector 𝑍𝑖 is fed
through a two-layer MLP, yielding update components (𝐺𝑖 ,𝑈𝑖 , 𝑠𝑖 ).
The next cell state 𝑆 ′

𝑖
is then computed via 𝑆 ′

𝑖
= 𝜎 (𝐺𝑖 ) ⊙ 𝑆𝑖 +

𝜎 (𝑠𝑖 ) tanh(𝑈𝑖 ), where 𝐺𝑖 controls the retention of the previous
state,𝑈𝑖 determines the change, and 𝑠𝑖 controls its magnitude.

Progressive Growing. We introduce a progressive growing strat-
egy for stable SPH-NCA training. Initial training begins with a
single NCA step, incrementally increasing the step count by one
every 𝑘 iterations until a maximum of 𝑁 steps is reached. Subse-
quently, the step size is uniformly sampled within [𝑁−𝛼, 𝑁 +𝛼]. For
image synthesis tasks, we employ (𝑘, 𝑁 , 𝛼) = (10, 40, 8), ensuring
robust convergence.

3 Experiments and Results
RGBA Image Synthesis and Scale Control. Using the Noto emoji

dataset and an initial single-blob state, we demonstrate SPH-NCA’s
ability to control feature scale during inference by varying the
SPH kernel radius ℎ. This is achieved by scaling the gradient term
in 𝑍𝑖 as (𝑆𝑖 , ℎ

ℎ0
∇𝑆𝑖 ). Figure 1 shows the generation result while

changing kernel radius and pixel density. The feature scale is di-
rectly governed by the SPH kernel radius (ℎ), which controls the
perception range and thus information propagation speed. Our
SPH formulation makes the model inherently agnostic to pixel
density, decoupling feature scale from the underlying grid resolu-
tion. This allows for high-quality generation across a wide range
of densities from a single trained model, a claim validated by the
quantitative analysis in Figure 3. Performance remains stable except
at extremely sparse discretizations where SPH gradient estimation
is compromised by an insufficient particle neighborhood.
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Figure 3: SPH-NCA can preserve the image quality while
inferring outside of the trained pixel density.

Exemplar-based Texture Synthesis and Generalization over Grid
Regularity. We employ the dataset and optimal transport style loss
from [Mordvintsev and Niklasson 2021]. We show that SPH-NCA
models trained solely on a regular grid can generalize to irregular
grids created by adding random jitters and removing pixels ran-
domly. The result shown in Figure 1 demonstrates the robustness
of SPH-NCA on a grid with varying regularity.

Text-guided Texture Synthesis and 2D-to-3D Transfer. We use
OpenCLIP [Cherti et al. 2023] for a multi-scale image-text align-
ment loss to perform text-guided texture synthesis. Figure 1 shows
the text-guided textures and its generation on a 3D surface. SPH-
NCA can synthesize even in high-curvature regions on the Stanford
Bunny, demonstrating its robust 2D-to-3D transfer capabilities.

4 Conclusion
We introduce SPH-NCA, a discretization-agnostic neural cellular
automata framework built upon SPH perception, gated adaptation,
and progressive growing. We demonstrate that SPH-NCA can gen-
eralize across diverse surface types–regardless of resolution, grid
regularity, or geometry–and can truly train once, generate anywhere.

Our work highlights the potential of SPH methods for spatial
data learning within NCA architectures. We aim to explore the
application of differentiable SPH methods in other spatial data
processing for generative modeling on diverse geometries.
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